Euler Problem 277


Euler Problem 277:

Rješenje pomoću Wolfram Mathematica. Interesantno je to da FindInstance ne pronalazi (bar kod mene) prvo minimalno rješenje, nego kad se potraži prvih 5 rješenja, onda će se naći i traženo. )

a1 = n;(*first*)
a2 = (4 a1 + 2)/3;(*U*)
a3 = a2/3;(*D*)
a4 = a3/3;(*D*)
a5 = a4/3;(*D*)
a6 = (4 a5 + 2)/3;(*U*)
a7 = (2 a6 - 1)/3;(*d*)
a8 = (2 a7 - 1)/3;(*d*)
a9 = (2 a8 - 1)/3;(*d*)
a10 = a9/3;(*D*)
a11 = a10/3;(*D*)
a12 = (4 a11 + 2)/3;(*U*)
a13 = a12/3;(*D*)
a14 = a13/3;(*D*)
a15 = (2 a14 - 1)/3;(*d*)
a16 = (2 a15 - 1)/3;(*d*)
a17 = a16/3;(*D*)
a18 = (2 a17 - 1)/3;(*d*)
a19 = a18/3;(*D*)
a20 = (2 a19 - 1)/3;(*d*)
a21 = (2 a20 - 1)/3;(*d*)
a22 = a21/3;(*D*)
a23 = a22/3;(*D*)
a24 = (4 a23 + 2)/3;(*U*)
a25 = a24/3;(*D*)
a26 = a25/3;(*D*)
a27 = (2 a26 - 1)/3;(*d*)
a28 = (4 a27 + 2)/3;(*U*)
a29 = (4 a28 + 2)/3;(*U*)
a30 = a29/3;(*D*)
a31 = (2 a30 - 1)/3;(*d*)
Timing[FindInstance[a31 == k && n > 10^15, {n, k}, Integers, 5]]

Advertisement

Euler Problems 1 – 20


Euler problem 1:

Pronaći multiplikatore za 3 i 5, ispod 1000, može se izvesti preko LINQ i Aggregate operatora.

C# – Implementacija:

var rjesenjeP1 = Enumerable.Range(1, 999).Aggregate(0, (parSum, i) =>; ((i % 3 == 0) || (i % 5 == 0)) ? parSum + i : parSum);
Console.WriteLine(rjesenjeP1);

Mathematica – Implementacija

sum = 0; For[i = 1, i < 1000, i++,
 If[Mod[i, 3] == 0 || Mod[i, 5] == 0, sum += i]]; sum

Euler Problem 2

Pronaći sumu parnih članova Fibonacijevog niza:
C# – Implementacija

static IEnumerable<long> FibonacciNiz()
{
//Prva dva člana, odnosno prethodna dva člana
long a = 1;
long b = 2;
//i-ti clan
long c = 0;
yield return a;
yield return b;
while (true)
 {
   yield return c = a + b;
   //nakon proracuna i-tog člana
   // prethodna dva člana postaju
   a = b;
   b = c;
 }
}

var rjesenjeP2 = FibonacciNiz().TakeWhile(x => x <= 4000000).Sum(x => x % 2 == 0 ? x : 0);
Console.WriteLine(rjesenjeP2);

Mathematica – Implementacija:

sum = 0; i1 = 1; i2 = 2; While[True,
 f = i1 + i2;
 i1 = i2;
 i2 = f;
 If[f > 4000000, Break[]]
  If[Mod[f, 2] == 0, sum += f; i++]
 ]; sum

Euler Problem 3:

C# – Implementacija

//Rastavljanje broja n na proste faktore n=n1*n2*n3*…nn
public static IEnumerable<string> Foktoriziraj(string izraz,Int64 n)
{
//Ako je 1 vrati izraz
if (n == 1)
yield return izraz;
else
{
//Prolazimo sve brojeve manje od n
for (Int64 i = 2; i <= n; i++)
{
//Ako je n djeljiv sa i
if ((n % i) == 0)
{
Int64 q = n / i;
//Zapišimo u izraz broj i
if (!izraz.EndsWith("= ")) izraz += " * ";
izraz += i.ToString();
//Nad djeljiteljem q ponovimo isti postupak rekurzivno
foreach (string podizraz in Foktoriziraj(izraz, q))
yield return podizraz;
yield break;
}
}
}
}

Console.WriteLine(Foktoriziraj(600851475143.ToString() + " = ",600851475143).SingleOrDefault());

Mathematica – Implementacija


Max[FactorInteger[600851475143][[All, 1]]]

Euler Problem 4

C# – Implementacija

public static bool IsPalindron(int n)
{
string str = n.ToString();
int length=str.Length;
bool retVal=true;
for (int i = 0; i <  length/ 2; i++)
{
if (str[i] != str[length - 1 - i])
{
retVal = false;
break;
}
}
return retVal;
}

Glavna funkcija:

int maxPalin=0;
for(int i=1;i<=999; i++)
{
for(int j=1;j<=999; j++)
{
int num=i*j;
if (IsPalindron(num))
{
if (num > maxPalin)
maxPalin = num;
}
}
}
Console.WriteLine("Project Euler 4");
Console.WriteLine(maxPalin);

Euler Problem 5

int product = 1;
List<int> lst = Enumerable.Range(2, 20).ToList();
for (int i = 0; i <=lst.Count; i++)
{
product *= lst[i];
bool again = true;
while(again)
{
again = false;
for (int j = i+1; j < lst.Count; j++)
{
if (0 == lst[j] % lst[i])
{
lst[j] /= lst[i];
product *= lst[i];
again = true;
}
}
}
}
Console.WriteLine(product);

Euler Problem 6

var sum_of_the_squares = Enumerable.Range(1, 100).Sum(n => n * n);
var square_of_the_sum = Enumerable.Range(1, 100).Sum() * Enumerable.Range(1, 100).Sum();
var rjesenjeP6 = square_of_the_sum - sum_of_the_squares;
Console.WriteLine(rjesenjeP6);

Euler Problem 7

public static IEnumerable<Int64> VratiProsteBrojeve(long n = -1)
{
yield return 2;
for (int i = 3; i < (n == -1 ? Ilong.MaxValue : n); i += 2)
{
bool bprostBroj = true;
for (int j = 2; j* <= i; j++)
if (i % j == 0)
bprostBroj = false;
if (bprostBroj)
yield return i;
}
}
var rjesenjeP7 = VratiProsteBrojeve().Take(10001).Last();
Console.WriteLine(rjesenjeP7);

Euler Problem 8

string str = "73167176531330624919225119674426574742355349194934" +
"96983520312774506326239578318016984801869478851843" +
"85861560789112949495459501737958331952853208805511" +
"12540698747158523863050715693290963295227443043557" +
"66896648950445244523161731856403098711121722383113" +
"62229893423380308135336276614282806444486645238749" +
"30358907296290491560440772390713810515859307960866" +
"70172427121883998797908792274921901699720888093776" +
"65727333001053367881220235421809751254540594752243" +
"52584907711670556013604839586446706324415722155397" +
"53697817977846174064955149290862569321978468622482" +
"83972241375657056057490261407972968652414535100474" +
"82166370484403199890008895243450658541227588666881" +
"16427171479924442928230863465674813919123162824586" +
"17866458359124566529476545682848912883142607690042" +
"24219022671055626321111109370544217506941658960408" +
"07198403850962455444362981230987879927244284909188" +
"84580156166097919133875499200524063689912560717606" +
"05886116467109405077541002256983155200055935729725" +
"71636269561882670428252483600823257530420752963450";
int maxProduct = 0;
int count = str.Length;

for (int i = 0; i < count - 5; i++)
{
int p1 = str[i] - '0';
int p2 = str[i + 1] - '0';
int p3 = str[i + 2] - '0';
int p4 = str[i + 3] - '0';
int p5 = str[i + 4] - '0';
if (p1 * p2 * p3 * p4 * p5 > maxProduct)
{
maxProduct = p1 * p2 * p3 * p4 * p5;
}
}
Console.WriteLine(maxProduct);

Euler Problem 9

var abc = (from p1 in Enumerable.Range(2, 999)
from p2 in Enumerable.Range(3, 999)
where p1 < p2 && p1+p2+Math.Sqrt(p1*p1+p2*p2)==1000.0
select p1 * p2 * Math.Sqrt(p1 * p1 + p2 * p2)).FirstOrDefault();
Console.WriteLine(abc);

Euler Problem 10

Korištena prethodna metoda za vraćanje prostih brojeva.

var suma = VratiProsteBrojeve(2000000).Sum();
Console.WriteLine(suma);

Euler Problem 11

int[,] matrix = new int[20, 20]
{
{08, 02, 22, 97, 38, 15, 00, 40, 00, 75, 04, 05, 07, 78, 52, 12, 50, 77, 91, 08},
{49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 04, 56, 62, 00},
{81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 03, 49, 13, 36, 65},
{52, 70, 95, 23, 04, 60, 11, 42, 69, 24, 68, 56, 01, 32, 56, 71, 37, 02, 36, 91},
{22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80},
{24, 47, 32, 60, 99, 03, 45, 02, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50},
{32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70},
{67, 26, 20, 68, 02, 62, 12, 20, 95, 63, 94, 39, 63, 08, 40, 91, 66, 49, 94, 21},
{24, 55, 58, 05, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72},
{21, 36, 23, 09, 75, 00, 76, 44, 20, 45, 35, 14, 00, 61, 33, 97, 34, 31, 33, 95},
{78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 03, 80, 04, 62, 16, 14, 09, 53, 56, 92},
{16, 39, 05, 42, 96, 35, 31, 47, 55, 58, 88, 24, 00, 17, 54, 24, 36, 29, 85, 57},
{86, 56, 00, 48, 35, 71, 89, 07, 05, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58},
{19, 80, 81, 68, 05, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 04, 89, 55, 40},
{04, 52, 08, 83, 97, 35, 99, 16, 07, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66},
{88, 36, 68, 87, 57, 62, 20, 72, 03, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69},
{04, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 08, 46, 29, 32, 40, 62, 76, 36},
{20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 04, 36, 16},
{20, 73, 35, 29, 78, 31, 90, 01, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 05, 54},
{01, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 01, 89, 19, 67, 48}
};
int maxProduct = 0;
for (int i = 0; i < 20; i++)
{
for (int j = 0; j < 20; j++)
{
if (j + 3 < 20)
{
if (matrix[i, j] * matrix[i, j + 1] * matrix[i, j + 2] * matrix[i, j + 3] > maxProduct)
maxProduct = matrix[i, j] * matrix[i, j + 1] * matrix[i, j + 2] * matrix[i, j + 3];
}
if(i + 3 < 20 )
{
if (matrix[i, j] * matrix[i + 1, j] * matrix[i + 2, j] * matrix[i + 3, j] > maxProduct)
maxProduct = matrix[i, j] * matrix[i + 1, j] * matrix[i + 2, j] * matrix[i + 3, j];
}
if(i + 3 < 20 && j + 3 < 20)
{
if (matrix[i, j] * matrix[i + 1, j + 1] * matrix[i + 2, j + 2] * matrix[i+3, j + 3] > maxProduct)
maxProduct = matrix[i, j] * matrix[i+1, j + 1] * matrix[i+2, j + 2] * matrix[i+3, j + 3];
}
if (i - 3 >= 0 && j + 3 < 20)
{
if (matrix[i, j] * matrix[i - 1, j+1] * matrix[i - 2, j+2] * matrix[i - 3, j+3] > maxProduct)
maxProduct = matrix[i, j] * matrix[i - 1, j + 1] * matrix[i - 2, j + 2] * matrix[i - 3, j + 3];
}
}
}
Console.WriteLine(maxProduct);

Euler Problem 12

//Problem 12:
long number=0;
long triangle = 0;
long numberOfDivisors = 0;
for (long i = 1; ;i++ )
{
    triangle += i;
    numberOfDivisors = 0;
    int squared= (int) Math.Sqrt(triangle);
    for (long j = 1; j <=squared ; j++)
    {
        if (triangle %j == 0 )
            numberOfDivisors+=2;

    }
    if(numberOfDivisors>=500)
    {
        number=i;
        break;
    }
}
Console.WriteLine("Number of divisors:{0}",number);
Console.WriteLine("Triangle Number: {0}", triangle);

Euler Problem 13

string numbers =
@"37107287533902102798797998220837590246510135740250
46376937677490009712648124896970078050417018260538
74324986199524741059474233309513058123726617309629
91942213363574161572522430563301811072406154908250
23067588207539346171171980310421047513778063246676
89261670696623633820136378418383684178734361726757
28112879812849979408065481931592621691275889832738
44274228917432520321923589422876796487670272189318
47451445736001306439091167216856844588711603153276
70386486105843025439939619828917593665686757934951
62176457141856560629502157223196586755079324193331
64906352462741904929101432445813822663347944758178
92575867718337217661963751590579239728245598838407
58203565325359399008402633568948830189458628227828
80181199384826282014278194139940567587151170094390
35398664372827112653829987240784473053190104293586
86515506006295864861532075273371959191420517255829
71693888707715466499115593487603532921714970056938
54370070576826684624621495650076471787294438377604
53282654108756828443191190634694037855217779295145
36123272525000296071075082563815656710885258350721
45876576172410976447339110607218265236877223636045
17423706905851860660448207621209813287860733969412
81142660418086830619328460811191061556940512689692
51934325451728388641918047049293215058642563049483
62467221648435076201727918039944693004732956340691
15732444386908125794514089057706229429197107928209
55037687525678773091862540744969844508330393682126
18336384825330154686196124348767681297534375946515
80386287592878490201521685554828717201219257766954
78182833757993103614740356856449095527097864797581
16726320100436897842553539920931837441497806860984
48403098129077791799088218795327364475675590848030
87086987551392711854517078544161852424320693150332
59959406895756536782107074926966537676326235447210
69793950679652694742597709739166693763042633987085
41052684708299085211399427365734116182760315001271
65378607361501080857009149939512557028198746004375
35829035317434717326932123578154982629742552737307
94953759765105305946966067683156574377167401875275
88902802571733229619176668713819931811048770190271
25267680276078003013678680992525463401061632866526
36270218540497705585629946580636237993140746255962
24074486908231174977792365466257246923322810917141
91430288197103288597806669760892938638285025333403
34413065578016127815921815005561868836468420090470
23053081172816430487623791969842487255036638784583
11487696932154902810424020138335124462181441773470
63783299490636259666498587618221225225512486764533
67720186971698544312419572409913959008952310058822
95548255300263520781532296796249481641953868218774
76085327132285723110424803456124867697064507995236
37774242535411291684276865538926205024910326572967
23701913275725675285653248258265463092207058596522
29798860272258331913126375147341994889534765745501
18495701454879288984856827726077713721403798879715
38298203783031473527721580348144513491373226651381
34829543829199918180278916522431027392251122869539
40957953066405232632538044100059654939159879593635
29746152185502371307642255121183693803580388584903
41698116222072977186158236678424689157993532961922
62467957194401269043877107275048102390895523597457
23189706772547915061505504953922979530901129967519
86188088225875314529584099251203829009407770775672
11306739708304724483816533873502340845647058077308
82959174767140363198008187129011875491310547126581
97623331044818386269515456334926366572897563400500
42846280183517070527831839425882145521227251250327
55121603546981200581762165212827652751691296897789
32238195734329339946437501907836945765883352399886
75506164965184775180738168837861091527357929701337
62177842752192623401942399639168044983993173312731
32924185707147349566916674687634660915035914677504
99518671430235219628894890102423325116913619626622
73267460800591547471830798392868535206946944540724
76841822524674417161514036427982273348055556214818
97142617910342598647204516893989422179826088076852
87783646182799346313767754307809363333018982642090
10848802521674670883215120185883543223812876952786
71329612474782464538636993009049310363619763878039
62184073572399794223406235393808339651327408011116
66627891981488087797941876876144230030984490851411
60661826293682836764744779239180335110989069790714
85786944089552990653640447425576083659976645795096
66024396409905389607120198219976047599490197230297
64913982680032973156037120041377903785566085089252
16730939319872750275468906903707539413042652315011
94809377245048795150954100921645863754710598436791
78639167021187492431995700641917969777599028300699
15368713711936614952811305876380278410754449733078
40789923115535562561142322423255033685442488917353
44889911501440648020369068063960672322193204149535
41503128880339536053299340368006977710650566631954
81234880673210146739058568557934581403627822703280
82616570773948327592232845941706525094512325230608
22918802058777319719839450180888072429661980811197
77158542502016545090413245809786882778948721859617
72107838435069186155435662884062257473692284509516
20849603980134001723930671666823555245252804609722
53503534226472524250874054075591789781264330331690"
string first10digit = numbers.Split(new char[] { '\r','\n',' '},StringSplitOptions.RemoveEmptyEntries)
                    .Aggregate((BigInteger)0, (poc, nn) =>; poc += BigInteger.Parse(nn)).ToString().Substring(0,10);

Euler Problem 14

namespace EulerProblem14
{
    class Program
    {
        static bool IsEven(long n)
        {
            return n % 2 == 0;
        }
        static long NextTerm(long n)
        {
            return IsEven(n) ? n / 2 : 3 * n + 1;
        }
        static IEnumerable<long> GetTerms(long n)
        {
            yield return n;
            if (n == 1)
                yield return 1;
            else
            {
                long a = n;
                while (a != 1)
                {
                    a = NextTerm(a);
                    yield return a;
                }
            }
        }
        static void Main(string[] args)
        {
            Console.WriteLine("EulerProblem14={0}",
                Enumerable.Range(1, 1000000).
                Select(x => new { x, Count = GetTerms(x).Count() }).
                OrderByDescending(x => x.Count).FirstOrDefault().x
                );
            Console.Read();

        }
    }
}

Euler Problem 15

namespace EulerProblem15
{
    class Program
    {
        static void Main(string[] args)
        {
            int max_x=20,max_y=20;
            long [,] matrix= new long[max_x+1,max_y+1];
            int i,j;

            for (i = 0; i <= max_x; i++)
            {
                matrix[max_x,i]=1;
                matrix[i,max_y]=1;
            }

            for (i = max_x - 1; i >= 0; i--)
            {
                for (j = max_y - 1; j >= 0; j--)
                    matrix[i, j] = matrix[i + 1, j] + matrix[i, j + 1];
            }

            Console.WriteLine(matrix[0,0]);
            Console.Read();
        }
    }
}

Euler Problem 16

var sumofDigit=BigInteger.Pow(2, 1000).ToString().
                     Aggregate(0, (sum, digit) => sum += int.Parse(digit.ToString()));

Euler Problem 17

Prebrojimo koliko ima slova u pojedinim ciframa koje se ponavljaju u brojevima od 1 – 1000.

1-9: – ima 36 slova.

10-19: ima 70 slova.

20-90: ima 46 slova

100: ima 5 slova

1000: ima 8 0slova

veznik AND: ima 3 slova.

1-9 se ponavlja 10 puta, 10-19 – 10 puta, veznik AND – se ponavlja 891 put itd.

namespace EulerProblem17
{
    class Program
    {
        static void Main(string[] args)
        {
            int jedanDodevet = "onetwothreefourfivesixseveneightnine".Length;
            int desetDodevetnaest = "teneleventwelvethirteenfourteenfifteensixteenseventeeneighteennineteen".Length;
            int veznik = "and".Length;
            int dvadesetDodevedeset = "twentythirtyfortyfiftysixtyseventyeightyninety".Length;
            int stotina = "hundred".Length;

            long count = 3/*one*/ + 8/*thousand*/ + 900 * stotina+ 100 * jedanDodevet +
                    100 * dvadesetDodevedeset + 891 * and + 80 * jedanDodevet + 10 * (jedanDodevet + desetDodevetnaest);

           Console.WriteLine(count);
           Console.Read();
        }
    }
}

Euler Problem 18

Brute force rješenje.

C#: Implementacija

namespace EulerProblem18
{
    class Program
    {
        static void Main(string[] args)
        {
            int N=15;
            int [][] triangle= new int [15][];
                    triangle[0]= new int[1]{75};
                    triangle[1]= new int[2]{95,64};
                    triangle[2]= new int[3]{17,47,82};
                    triangle[3]= new int[4]{18,35,87,10};
                    triangle[4]= new int[5]{20,04,82,47,65};
                    triangle[5]= new int[6]{19,01,23,75,03,34};
                    triangle[6]= new int[7]{88,02,77,73,07,63,67};
                    triangle[7]= new int[8]{99,65,04,28,06,16,70,92};
                    triangle[8]= new int[9]{41,41,26,56,83,40,80,70,33};
                    triangle[9]= new int[10]{41,48,72,33,47,32,37,16,94,29};
                    triangle[10]= new int[11]{53,71,44,65,25,43,91,52,97,51,14};
                    triangle[11]= new int[12]{70,11,33,28,77,73,17,78,39,68,17,57};
                    triangle[12]= new int[13]{91,71,52,38,17,14,91,43,58,50,27,29,48};
                    triangle[13]= new int[14]{63,66,04,68,89,53,67,30,73,16,69,87,40,31};
                    triangle[14]= new int[15]{04,62,98,27,23,09,70,98,73,93,38,53,60,04,23};

             int max;
             int[][] best=new int[N][];
             for (int i = 0; i < N; i++)
                 best[i]=new int[i+1];

             best[0][0] = triangle[0][0];

            for (int i = 1; i < N; i++)
             {
                best[i][0] = triangle[i][0] + best[i-1][0];

                for (int j = 1; j < i ; j++)
                    best[i][j] = triangle[i][j] + Max(best[i - 1][j], best[i - 1][j - 1]);

                best[i][i] = triangle[i][i] + best[i - 1][i - 1];
             }
             max = best[N - 1][0];

            for (int i = 1; i < N; i++)
               if (best[N - 1][i] > max)
                  max = best[N - 1][i];

                Console.WriteLine(max);
                Console.Read();

        }
        static int Max(int i,int j)
        {
            if(i>=j)
                return i;
            else
                return j;
        }
    }
}

Euler Problem 19

Prosto igranje sa Datetime tipom.

C# – Implementacija

namespace EulerProblem19
{
    class Program
    {
        static void Main(string[] args)
        {
            DateTime end = new DateTime(2000, 12, 31);
            DateTime start = new DateTime(1901, 1, 1);

            int sundayCount = 0;
            for (DateTime date = start; date < end; date = date.AddMonths(1))
              if (date.DayOfWeek == DayOfWeek.Sunday)
                 sundayCount++;

            Console.WriteLine(sundayCount);
            Console.Read();
        }
    }
}

Euler Problem 20

Rješenje koristi BigInteger klasu za zbrajanje cifara. Izračuna se faktorijel i saberu cifre.

Wolfram Mathematica:

Total[IntegerDigits[100!]]

C#

var sumofDigit = Enumerable.Range(1, 100).
       Aggregate((BigInteger)1, (prev, numb) => prev *= numb).ToString().
       Aggregate(0, (sum, digit) => sum += int.Parse(digit.ToString()));

Windows 7 i .NET4 – TaskBar II dio


U prethodnom postu govorili smo o Senzorima i Lokaciji kao novim proširenjima u Windows 7. Ovim postom želimo govoriti o redizaniranom i proširenom Windows Taskbar-u, koji u najnovijoj verziji Windows OS čini najznačajniju novost sa aspekta UI. Još u prethodnoj verziji (Windows Vista) vidjeli smo određeni pomak u odnosu na XP u pogledu dizajna i funkcionalnosti TaskBar-a. Naime, Taskbar ima nekoliko funkcija, a vezane su za navigaciju među otvorenim aplikacijama, QuickBar traku sa brzim pristupom određenim programima koji se često koriste, kao i trenutno otvorenim servisima poput antivirus i antyspyware i sl. Taskbar u ovoj verziji prvi put se pojavljuje u Windows 95 verziji, a to je i prva 32bitna verzija OS-a. Task bar ranijih verzija poput 3.11 i starijih nije bio u ovom obliku, kakav je sada.

Historija Windows OS kroz 9 slika

Na samom početku napravimo vrlo kratki pregled verzija Windowsa od 1985-2009. godine. Kao što je već poznato prva verzija Windows OS pojavila se u Novebru 1985. godine, koja nije bila potpuna. Dok sam pripremo ovaj post na internetu sam pronašao dosta linkova s kojih se mogu skinuti stare verzije windowsa, i malo se podsjetiti kako je bilo nekad.

image
Windows 1.0 iz 1985 godine

Druga verzija pojavila se dvije godine kasnije (1987. godine), koja je u to vrijeme vrlo dobro ocjenjena.

clip_image002Windows 2.0 – lansirana u jesen 1987 godine.

Pravu revoluciju i početak Microsoftove slave napravila je verzija Windows 3.11. Objavljena je 1990. godine. Legendarni Minesweeper tada je bio vrlo popularan. Moji prvi ozbiljniji dodiri sa kompjuterima mogu se vezati sa ovim OS-om, ne ubrajajući ranije srednjoškolsko obrazovanje iz informatike.

clip_image004Windows 3.11

Krajem 1994. godine izlazi Windows 95 i to prvi OS koji je mogao vrtiti 32bitne aplikacije.

clip_image006Windows 95

Poslije dolaze verzije 98 (1997) i Me(1999), odnosno NT(1995) i Win2000(1999), kao serverski sistemi.

clip_image008Windows 98

clip_image010Windows ME

A poslije njih 2001. godine pojavljuje se Windows XP, koji do SP2, nije doživio puno pohvala. Druga zakrpa ili SP2 Windowsu XP donosi veliku stabilnost i mnogo veću sigurnost. Zato je i do danas (skoro 10 godina poslije) najviše koiršten OS. Još u to vrijeme Microsoft vrši planove da razvije OS koji će promjeniti koncept na kojem su se bazirali prethodni OS-ovi, a koji je većim dijelom ostvaren kroz Windows 7.

clip_image012Windows XP

2006. godine lansira se Windows Vista koja, rekao bi poput Windows 1.0, ne doživljava preveliku znatiželju korisnika.

clip_image014Windows Vista

Kada se pogleda unazad 25 godina svaki OS prvenstveno pamtimo po njegovom Desktopu, valjda to fotografsko pamćenje prvo dolazi na pamet kada se pokušavamo sjetiti. Desktop je, laički gvoreći, slika u pozadini, preko nje sličice, te standardno na donjoj strani Taskbar. Svaka od verzija imala je nekakvu promjenu na Taskbaru. Prve 3 verzije (95,98,Me), manje više, kod TaskBar-a se mjenjao samo izgled sličice na startnom dugmetu, da bi pojavom XP-a, počela evolucija Taskbara.

Konačnu evoluciju Taskbar doživljava dolaskom Windows7, koji je od jednostavne trake sa prikazom sličica, evoluirao u moćnu komponentu grafički nabildanu i multifunkcijonalnu.

clip_image016Windows 7

Windows 7 Taskbar

Razvijati aplikacije pod Windows 7, ne predstavljaja problem kompatibilnost i stabilnost, obzirom da razvojni alati to već obezbjeđuju, već u stapanju iste u Windows 7 okruženje. Ovo se prvenstveno misli na iskorištavanje osobina novog redizajniranog Taskbara, koji će aplikaciju učiniti sastavnom komponentom OS-a, a krajnji korisnik neće oskudjevati u mogućnostima koje TaskBar nudi u Windows 7.

clip_image017

Kada se govori o Taskbar komponenti u Windows 7, potrebno je spomenuti njegove osobine i sastavne dijelove, koji se na prvi pogled i ne mogu uočiti.

clip_image019

Thumbnail Preview prozorčić

U koliko je određena aplikacija pokrenuta, na Taskbar-u se pojavljuje sličica aplikacije. U prethodnim verzijama pojavljivala se sličica (ikona) i naslov aplikacije koja je nepotrebno zauzimala prostor. Sa Windows 7, naslov aplikacije je isključen, mada postoji opcija za prikaza i naslova. Gornja slika pokazuje Internet Explorer koji je pokrenut i minimiziran. Ukoliko odvučemo miša na korespodentnu sličici na Taskbar-u, pojavljuje se tzv. Thumbnail Preview prozorčić(i), koji prikazuje tekući sadržaj aplikacije. To nije ništa novo jer i Windows Vista ima tu istu osobinu. Međutim, za razliku od Viste ovaj preview je interaktivan, i može sadržavati određene akcije koje korisnik može koristiti. Sljedeća slika prikazuje Windows Media player na isti način kao i prethodna. Ovaj preview ima pored ostalog i Thumb Buttons za manipulaciju sa media datotekom.

clip_image020

Na slici su označeni osnovni dijelovi novog Thumbnail preview prozorčića.

Jump List – Iskačića Lista

U koliko kliknemo desnom tipkom miša na sličicu na Taskbaru pojavljuje se Jup List (Iskačuća lista), koja za razliku od prethodnih verzija nije obični kontekstni meni.

clip_image021

Iskačuća lista inicijalno sadrži određene akcije, poput Close Window, Pin This to TaskBar. Ostale akcije se mogu dizajnirati zavisno od namjene, a koje će biti demonstrirane kasnije.

Pored Jup liste i Thumbnail preview prozorčića, te Thumb Buttons,  Windows 7 sadrži osobine Icon Overlay, iscrtavanje preko sličice na Taskbaru zavisno od određenih aktivnosti same aplikacije. Sličica nema samo funkciju predstavljanja aplikacije u Windows OS, ona je u Windows 7 dobila još jednu funkciju, a to je da se ponaša i kao progress kontrola. Da se primjetili da prilikom skidanja sadržaja sa interneta ili kopiranja datoteka, izgled sličice u Taskbaru se mijenja, odnosno preko sličice se iscrtava progress.

Pored nabrojanog sa sličicom se mogu raditi i druge stvari poput, promjene izgleda u odnosu na određena stanja u aplikaciji i sl.

Win7 TaskBarDemo

Koristiti Visual Studio 2010 pri razvoju aplikacija koje iskorištavju osobine Windws 7 Taskbara možemo postići na dva načina. Prvi način je korištenje već spomenutog API Code Pack open source projekta. Ovom bibliotekom moguće je razvijati kako Windows Forms tako i WPF aplikacije. Medjutim WPF aplikacije možemo razvijati i bez API Code Pack u koliko želimo ostati samo na funkcionalnostima Taskbar-a, a da ne koristimo ostale osobine popult Libraries, Known Folder, Sensors i sl.

Demo koji će biti prezentiran će biti WindowsForms aplikacija koja će koristiti API Code Pack, u nekom od narednih postova biće prikazan demo sa WPF aplikacijom uz korištenje novih proširenja .NET 4.0 koji je preko priljepljenih osobina (Attached properties) omogućuje korištenje Windows 7 TaskBar-a, u WPF.

TaskBarDemo, je MDI aplikacija, u kojoj se otvoreni dokumenti posebno prikazuju u Thumbnail Preview prozorčiću. Kada pokrenemo aplikaciju te formiramo nekoliko novih dokumenata preko File->New ili File->Open, te odnesemo miša na sličicu u TaskBaru, prikazuju se otvoreni dokumenti u aplikaciji.

clip_image023

U koliko kliknemo na određeni Thumbnail Preview prozorčić, u aplikaciji se aktivira korespodentni dokument. Na ovaj način smo sihronizirali aktivaciju dokumenata u MDI aplikaciji. Na isti način u koliko odaberemo dugme clip_image024, zatvoriće nam se korespodentni dokument. Analogno, ako se dokument zatvori na standardan način preko sistemskog menia, zatvoreće se i korespodentni pregled u taskbaru.Zbog obimnosti članka, nije obrađena Jump Lista, koja se na sličan način može implementirati.

Kompletan sourcecode se može skinuti sa ovog linka.